Avoidance of operational sampling errors in drinking water analysis

Author:

Fernandes Ana1ORCID,Figueiredo Margarida2ORCID,Ribeiro Jorge3ORCID,Neves José45ORCID,Vicente Henrique56ORCID

Affiliation:

1. CBIOS, Escola de Ciências e Tecnologias da Saúde, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal

2. Departamento de Química, Escola de Ciências e Tecnologia, Centro de Investigação em Educação e Psicologia, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal

3. Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Álvares, Viana do Castelo, Portugal

4. Instituto Universitário de Ciências da Saúde, CESPU, Rua José António Vidal, 81, 4760-409 Famalicão, Portugal

5. Centro Algoritmi, Universidade do Minho, Campus de Gualtar, Rua da Universidade, 4710-057 Braga, Portugal

6. Departamento de Química, Escola de Ciências e Tecnologia, REQUIMTE/LAQV, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal

Abstract

AbstractThe internal audits carried out in the first half of 2019 in water laboratories as part of quality accreditation in accordance with ISO/IEC 17025:2017 showed a high frequency of adverse events in connection with sampling. These faults can be a consequence of a wide range of causes, and in some cases, the information about them can be insufficient or unclear. Considering that sampling has a major influence on the quality of the analytical results provided by water laboratories, this work presents a system for reporting and learning adverse events. Its aim is to record nonconformities, errors, and adverse events, making possible automatic data analysis aiming to ensure continuous improvement in operational sampling. The system is based on the Eindhoven Classification Model and enables automatic data analysis and reporting to identify the main causes of failure. Logic programming is used to represent knowledge and support the reasoning mechanisms to model the universe of discourse in scenarios of incomplete, contradicting, or even unknown information. In addition to suggesting solutions to the problem, the system provides formal evidence of the solutions presented, which will help to continuously improve drinking water quality and promote public health.

Funder

FCT - Fundação para a Ciência e Tecnologia

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3