Effects of organic carbon content on in situ remediation time using steam–air injection

Author:

Awandu W.1ORCID,Trötschler O.2ORCID

Affiliation:

1. Department of Civil and Structural Engineering, Masinde Muliro University of Science and Technology, P.O. BOX 190 - 50100, Kakamega – Webuye Road, Kakamega, Kenya

2. VEGAS, Universität Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany

Abstract

Abstract Groundwater contamination by chlorinated hydrocarbons (CHC) is a common phenomenon that poses health risks to both humans and animals. These halogenated hydrocarbons infiltrate into the soil matrices and form pools at the bottoms of the aquifers thus contaminating the groundwater sources. Thermally enhanced soil vapour extraction (TSVE) using steam–air injection has gained popularity as an alternative technique to remediate the saturated and vadose source zones contaminated with CHC. This technique has been successfully applied in the remediation of contaminated sites (brownfields, industrial sites) and groundwater. However, the presence of organic carbon (OC) contents within the soil matrices has not been intensively studied. This paper, therefore, intends to contribute toward increasing the understanding of the effects of OC on the remediation time using TSVE. A 2-D flume experimental model was conducted in VEGAS laboratory using coarse sand, fine sand and silty soil with 0, 1 and 2% addition of the activated carbon as OC to investigate the desorption time of PCE and TCE as CHC during TSVE extraction using steam–air injection. 100 kg of soil mixed with the activated carbon was treated with 50 g TCE and 50 g PCE and then remediated using TSVE. The remediation times were recorded and recovered CHC was documented. It was discovered that the presence of OC enhanced the adsorption of the CHC onto the soil matrices thereby increasing the time required for the complete remediation of the contaminant from the soil. An increase of OC by 1% resulted in desorption time by a factor of 4–7.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3