Control of desalination plants using sliding mode scheme with state observer

Author:

Phuc Bui Duc Hong1,You Sam-Sang2ORCID,Kim Hwan-Seong3,Lee Sang-Do4

Affiliation:

1. Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK 74104, USA

2. Division of Mechanical Engineering, Korea Maritime and Ocean University, Busan 49112, South Korea

3. Division of Logistics, Korea Maritime and Ocean University, Busan 49112, South Korea

4. Division of Navigation and Information Systems, Mokpo National Maritime University, Mokpo, Jeollanam-do 58628, South Korea

Abstract

Abstract This paper deals with real-time control with observer to manipulate desalination plants as well as to monitor system states for smart operations. The controller plays an important role in achieving stabilization of reverse osmosis (RO) systems to guarantee the desired water product and concentration. The super-twisting (STW) sliding mode control (SMC) algorithm guarantees performance while reducing chattering. Supposing that all the state variables are not available by sensors, the observer is implemented to provide state estimation. Since smart operations depend on control algorithm and sensor availability, the proposed strategy provides robustness to ensure the water productivity even under uncertainties or under failure of sensors. The robustness is guaranteed by active controller where 80% of disturbance is eliminated in product water flow and that of product water quality is approximately 95%. As well, the state observer can produce precise predictions of the unmeasured states. Sliding mode control with observer provides the system with stability, while assuring better performances against uncertainties. Finally, the active controller with state estimator can guarantee a robust control strategy and monitoring system to extend the life of the filters and membranes, while ensuring sustainability. This control strategy is highly recommended for smart operations of desalination plants.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3