Modelling of clear water scour depth around bridge piers using M5 tree and ANN-PSO

Author:

Kumar Amarjeet1ORCID,Baranwal Anubhav1ORCID,Das B. S.1ORCID

Affiliation:

1. 1 Civil Engineering Department, NIT Patna, India

Abstract

Abstract Scouring refers to the process by which bed sediment in a river is eroded around the periphery of a bridge abutment or pier. Many empirical models are available to estimate the scour depth for different flow, geometry, and bed roughness condition. However, none of them provide a better estimation of scour depth for a wide range of input parameters. Thus, in this paper, the scour depth around bridge piers has been modelled using M5 tree and hybrid artificial neural network (ANN)-particle swarm optimisation (PSO) techniques by considering the wide range of datasets. The clear-water scouring (CWS) datasets are collected from the literature and five different non-dimensional influencing parameters are selected as input parameters to model the scour depth. A Gamma test (GT) was performed to choose the best input parameter combinations. Based on the lowest gamma value and V-ratio, 4 out of 26 distinct input combinations for CWS depth modelling were chosen in the GT. According to statistical measures, the proposed M5 tree model predicts scour depth better than empirical approaches. Additionally, the developed ANN-PSO model is suitable for determining scour depth in both rectangular and circular shapes of piers. The results of both developed models are compared with other existing models and found to be satisfactory.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3