Rainfall prediction optimization model in ten-day time step based on sliding window mechanism and zero sum game

Author:

Liu Xin12ORCID,Sang Xuefeng2,Chang Jiaxuan2,Zheng Yang2,Han Yuping1

Affiliation:

1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. Research Laboratory for Water Resources Management, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

Abstract Rainfall is a precious water resource, especially for Shenzhen with scarce local water resources. Therefore, an effective rainfall prediction model is essential for improvement of water supply efficiency and water resources planning in Shenzhen. In this study, a deep learning model based on zero sum game (ZSG) was proposed to predict ten-day rainfall, the regular models were constructed for comparison, and the cross-validation was performed to further compare the generalization ability of the models. Meanwhile, the sliding window mechanism, differential evolution genetic algorithm, and discrete wavelet transform were developed to solve the problem of data non-stationarity, local optimal solutions, and noise filtration, respectively. The k-means clustering algorithm was used to discover the potential laws of the dataset to provide reference for sliding window. Mean square error (MSE), Nash–Sutcliffe efficiency coefficient (NSE) and mean absolute error (MAE) were applied for model evaluation. The results indicated that ZSG could better optimize the parameter adjustment process of models, and improved generalization ability of models. The generalization ability of the bidirectional model was superior to that of the unidirectional model. The ZSG-based models showed stronger superiority compared with regular models, and provided the lowest MSE (1.29%), NSE (21.75%), and MAE (7.5%) in the ten-day rainfall prediction.

Funder

Scientific Research Projects of IWHR

China Three Gorges Corporation Research Project

National Natural Science Foundation of China

Innovation Foundation of North China University of Water Resources and Electric Power for PhD Graduates

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3