Affiliation:
1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
2. Research Laboratory for Water Resources Management, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Abstract
Abstract
Rainfall is a precious water resource, especially for Shenzhen with scarce local water resources. Therefore, an effective rainfall prediction model is essential for improvement of water supply efficiency and water resources planning in Shenzhen. In this study, a deep learning model based on zero sum game (ZSG) was proposed to predict ten-day rainfall, the regular models were constructed for comparison, and the cross-validation was performed to further compare the generalization ability of the models. Meanwhile, the sliding window mechanism, differential evolution genetic algorithm, and discrete wavelet transform were developed to solve the problem of data non-stationarity, local optimal solutions, and noise filtration, respectively. The k-means clustering algorithm was used to discover the potential laws of the dataset to provide reference for sliding window. Mean square error (MSE), Nash–Sutcliffe efficiency coefficient (NSE) and mean absolute error (MAE) were applied for model evaluation. The results indicated that ZSG could better optimize the parameter adjustment process of models, and improved generalization ability of models. The generalization ability of the bidirectional model was superior to that of the unidirectional model. The ZSG-based models showed stronger superiority compared with regular models, and provided the lowest MSE (1.29%), NSE (21.75%), and MAE (7.5%) in the ten-day rainfall prediction.
Funder
Scientific Research Projects of IWHR
China Three Gorges Corporation Research Project
National Natural Science Foundation of China
Innovation Foundation of North China University of Water Resources and Electric Power for PhD Graduates
Subject
Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献