How close simple EAs’ optimal solutions can approach global optima: experience from water distribution system design problems

Author:

Yin Hang1,Xu Chengna1,Yao Fengyi1,Chu Shipeng1,Huang Yuan1

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Abstract

Abstract An issue regarding near-optimal solutions identified by evolutionary algorithms (EAs) is that their absolute deviations from the global optima are often unknown, and hence an EA's performance in handling real-world problems remains unclear. To this end, this paper investigates how close optimal solutions from simple EAs can approach the global optimal for water distribution system (WDS) design problems through an experiment with the number of decision variables ranging from 21 to 3,400. Three simple EAs are considered: the standard differential evolution, the standard genetic algorithm and the creeping genetic algorithm (CGA). The CGA consistently identifies optimal solutions with deviations lower than 50% to the global optimal, even for the WDS with 3,400 decision variables, but the performance of the other two EAs is heavily case study dependent. Results obtained build knowledge regarding these simple EAs’ ability in handling WDS design problems with different sizes. We must acknowledge that these results are conditioned on the WDSs and the parameterization strategies used, and future studies should focus on generalizing the findings obtained in this paper.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Reference42 articles.

1. Optimizing multireservoir operation: hybrid of bat algorithm and differential evolution;Journal of Water Resources Planning and Management,2015

2. Examining the possibilities: generating alternative watershed-scale BMP designs with evolutionary algorithms;Water Resources Management,2013

3. Robust optimization of water infrastructure planning under deep uncertainty using metamodels;Environmental Modelling & Software,2017

4. Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge;Environmental Modelling & Software,2015

5. Impact of starting position and searching mechanism on the evolutionary algorithm convergence rate;Journal of Water Resources Planning and Management,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3