Design characteristics of showering aeration system

Author:

Roshan R. U.1ORCID,Mohammad Tanveer1,Roy Subha M.2,Rajendran R.3

Affiliation:

1. Department of Aquacultural Engineering, College of Fisheries Engineering, Tamil Nadu Dr J Jayalalithaa Fisheries University, Nagapattinam 611002, Tamil Nadu, India

2. Agricultural Engineering Department, Triguna Sen School of Technology, Assam University, Silchar 788 011, Assam, India

3. College of Fisheries Engineering, Tamil Nadu Dr J Jayalalithaa Fisheries University, Nagapattinam 611002, Tamil Nadu, India

Abstract

Abstract The showering aeration system (SAS) was designed and its performance was evaluated by conducting the aeration experiments in a tank of dimension 2 × 4 × 1.5 m. Initially, the aeration experiments were conducted to optimize the radius of curvature of the SAS with different values, such as = 0, 5, 10, 15, and 20 mm, and maintain other geometric parameters, i.e. number of holes in the shower (); height of water fall (H); diameter of the shower hole (d); volume of water under aeration (V) and water flow rate (Q) as constants. The optimum radius of curvature () was found to be 10 mm. The aeration experiments were further conducted with four different non-dimensional geometric parameters such as the number of holes , the ratio of the height of water fall to the length of shower arm the ratio of the diameter of the hole to the length of shower arm and the ratio of the volume of water to the cube of the length of shower arm The Response Surface Methodology and Box–Behnken Design were used to optimize the non-dimensional geometric parameters of the SAS to maximize the Non-Dimensional Standard Aeration Efficiency. The result indicates that the maximum NDSAE of 16.98 × 106 was obtained from the SAS performance at = 80; = 2; = 4 and = 48.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3