Green synthesis of iron nanoparticles from the baru (Dipteryx alata) endocarp extract for the efficient removal of rhodamine B and caffeine from water through the heterogeneous Fenton process

Author:

Corrêa Cassiano Ricardo Reinehr1,de Siqueira Adriano Buzutti2,Matos Lopes Paulo Renato3,Ambrosio Jéssica Aparecida Ribeiro4,Simioni Andreza Ribeiro4,de Vasconcelos Leonardo Gomes12,de Morais Eduardo Beraldo15ORCID

Affiliation:

1. a Postgraduate Program in Water Resources, Federal University of Mato Grosso, Cuiabá, MT, Brazil

2. b Department of Chemistry, Federal University of Mato Grosso, Cuiabá, MT, Brazil

3. c Department of Plant Production, College of Agricultural and Technological Sciences, São Paulo State University, Dracena, SP, Brazil

4. d Research and Development Institute, Vale do Paraíba University, São José dos Campos, SP, Brazil

5. e Department of Sanitary and Environmental Engineering, Federal University of Mato Grosso, Cuiabá, MT, Brazil

Abstract

Abstract This study presents the first-time synthesis of iron nanoparticles (FeNPs) using an aqueous extract from the baru fruit endocarp (Dipteryx alata). Characterization through scanning electron microscopy and dynamic light scattering revealed spherical shapes with an average diameter of 419.2 nm. Fourier transform infrared spectroscopy identified phytochemicals from the baru fruit extract, acting as both reducing and stabilizing agents. X-ray diffraction confirmed the amorphous nature of the FeNPs. The Fenton-like catalytic efficiency of FeNPs was investigated for degrading rhodamine B (RhB) and caffeine. The impact of crucial parameters such as pH, H2O2 dosage, nanoparticles concentration, and temperature on the degradation process was assessed. At pH 3.0, with 1.0 g L−1 of FeNPs, 1% H2O2, and 45 °C, RhB and caffeine degradation reached 99.14 and 92.01%, respectively. The catalytic reaction kinetics followed a pseudo-first-order model for caffeine and a pseudo-second-order model for RhB. Phytotoxicity studies on Cucumis sativus confirmed the non-toxic nature of the degraded products of RhB and caffeine. These findings highlight the potential of FeNPs synthesized from the baru endocarp extract as a catalyst for removing organic pollutants, suggesting promising applications in environmental remediation and related fields.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3