Research on quantification method of water pollution ecological environment losses

Author:

Lv Cuimei1,Jue Yabo1,Guo Xi1ORCID,Ling Minhua1,Yan Denghua2

Affiliation:

1. a School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China

2. b Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

Abstract Economic and social development have worsened the situation of water pollution and even the ecological environment. It is helpful to quantify the water pollution ecological environment losses for decision-makers to formulate reasonable pollution control plans. However, the current quantitative analyses led by economic methods are not comprehensive and systematic. Therefore, based on the emergy theory and method system of eco-economics, this study analyzed the internal energy flow process of the water-polluted ecosystem, discussed the composition of water-polluted ecological environment loss, and proposed a quantitative model of water-polluted ecological environment loss based on the emergy analysis method. It can reasonably quantify the ecological environment loss caused by water pollution and provide a reference for optimizing regional industrial layout, scientifically formulating pollution control planning, and promoting the sustainable development of the ecosystem. Taking Kaifeng City in Henan Province as an example, the rationality of the model is verified. The results show that the annual average total energy value of water pollution ecological environment loss in Kaifeng City is 3.83 × 1020sej, equivalent to 145 million yuan (0.76) of Kaifeng's gross domestic product (GDP) in 2018.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3