Numerical simulation of supercritical flow in sudden contractions flumes

Author:

Süme Veli1ORCID

Affiliation:

1. 1 Department of Civil Engineering, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, Rize 53100, Türkiye

Abstract

ABSTRACT In this research, the effect of sudden non-continuous contraction on the energy dissipation of supercritical flows was numerically investigated. This study focuses on energy dissipation in sudden contractions in supercritical flows. The numerical models were studied using FLOW-3D software and the random number generator (RNG) turbulence model. The laboratory tests were performed on sudden contractions of 10–15 cm and used shapes such as geometric trapezoidal and semicircular. Numerical simulations were carried out at a distance of 1.5 m from the supercritical flow generator gate, at a fixed opening of 2.6 cm, with the Froude number in the range of 2.5–7 and the relative contraction in the range of 8.9–9.73. This laboratory study found that as the Froude number of the upstream flow increases, the energy dissipation increases in the upstream (ΔE/E0) and downstream (ΔE/E1). For the 15 cm contraction, the results indicated that the energy loss compared with section A is 48.25% and compared with section B, it is 69.5% more than a free hydraulic jump in this channel. According to the conclusion, this value in trapezoidal constriction is 45.73 and 63.6% higher than in free hydraulic jump, respectively.

Publisher

IWA Publishing

Reference25 articles.

1. Experimental investigation of hydraulic jump parameters in sill application mode with various synthesis;Journal of Hydraulic Structures,2023

2. Numerical investigation of modified semi-cylindrical weirs;Water Resources Management,2023

3. Experimental establishing of moving hydraulic jump in a trapezoidal channel;Civil Engineering Journal,2023

4. Flow patterns and energy dissipation over various stepped chutes;Journal of Hydraulic Engineering, ASCE,2006

5. Experimental investigation of energy dissipation in the sudden chocked flow with free surfaces;Journal of Civil and Environmental Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3