Using image texture to monitor the growth and settling of flocs

Author:

Ma Qidong12ORCID,Liu Yan1,He Zhangwei12,Wang Haiguang12,Wang Ruolan12,Kong Yueping23,Li Zhihua12ORCID

Affiliation:

1. a Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

2. b Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

3. c School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

Abstract

Abstract Currently, a reliable and easy-to-use method to monitor flocculation in the water treatment process is highly demanded, especially for small water purification stations. For this problem, in situ images were used to analyze the flocculation process under different conditions via jar tests. A texture feature of the gray level co-occurrence matrix was found to be helpful for monitoring the floc status, such as growth rate and settling velocity. To further verify this finding, we established the correlation between the texture time sequence curve (TTSC) and its corresponding floc status. The slope of the TTSC during the growth phase and during the settling phase can describe the growth rate and the settling velocity, respectively, i.e., the higher the slope, the higher the growth rate and settling velocity. In addition, significant differences between the TTSCs in various abnormal conditions and the normal condition of coagulation can be identified. By using the TTSC for detecting abnormal conditions, we again verified that the texture feature can reliably reflect the flocculation process. Our study helps to develop a low-cost, stable, and simple method for monitoring flocculation and detecting abnormal conditions, which can effectively be used in the operation and management of water treatment plants.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Control of Polymer Dosage Using Floc Images in Sludge Dewatering Plant;Environmental Processes;2024-05-30

2. Exploring the rise of AI-based smart water management systems;AQUA — Water Infrastructure, Ecosystems and Society;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3