Study on the clogging pattern of multi-graded microparticles in porous asphalt concrete

Author:

Wang Xinmei1,Qi Wenye2,Li Yaxian1,Wu Lanzhen1,Wang Yucai1

Affiliation:

1. a College of Water Resources and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China

2. b Lanzhou Dacheng Technology Co., Ltd, Lanzhou New Area, 730300, China

Abstract

Abstract The current research on the blockage law of porous asphalt concrete (PAC) is mostly focused on the macroscopic level, which cannot reveal the decay mechanism of the percolation function of porous asphalt pavement during micro-particle blockage, especially the change law of permeability coefficient. In this paper, the key factors affecting the percolation and clogging characteristics of PAC are analysed at both macroscopic and detailed levels, and the internal void characteristics of PAC and the migration law of clogging particles are quantified. In this experiment, porous asphalt concrete specimens with 15–25% porosity are used to analyse the influence law of different factors on the percolation coefficient and to construct a clogging prediction model under different clogging conditions. CT scans were used to analyse the void characteristics of PAC before and after plugging and cleaning when wind-accumulated sand was used as a plugging material, and an evaluation model of PAC seepage plugging analysis based on fine view void characteristics was established. The results show that the permeable concrete specimens under 200 mm water head are severely plugged, and the seepage below 0.283 m/s appears in the later stage of rapid plugging. The plugging degree of pervious concrete specimens with 25% porosity was significantly higher than that of other porosity specimens.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of porous structures on point source dispersion across the sediment–water interface;AQUA — Water Infrastructure, Ecosystems and Society;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3