The role of reactive oxygen species in Staphylococcus aureus photoinactivation by methylene blue

Author:

Sabbahi Sonia12,Alouini Zoubeir1,Jemli Meryam1,Boudabbous Abdellatif2

Affiliation:

1. National Institute of Research of Rural Engineering Water and Forestry Tunis, Rue Hédi Karray, B.P. 10, 2080, Ariana, Tunis, Tunisia

2. Department of Biology, University of Sciences, Ariana, Tunis, Tunisia

Abstract

Methylene blue (MB) has been shown to photoinduce the direct inactivation of Gram-positive bacteria Staphylococcus aureus (S. aureus) in water. We have investigated the mechanism of S. aureus photoinactivation conducting firstly sodium azide (reactive ion N3−), as a good physical singlet oxygen quencher, then the amino acids tryptophan (Trp), as a non-specific singlet oxygen quencher and the mannitol, as an hydroxyl free radical scavenger. Inactivation of MB photosensitization is the antioxidants type dependent. When the bacteria was treated with MB (20 μM) under light during 10 min of exposure, it was found that survival fraction had decreased dramatically to about 31.27±5.39%. The presence of sodium azide and Trp failed to shown any protection from the MB photodynamic activity. In the presence of mannitol, S. aureus could be protected, reaching a protection level of about 27%. It is possible that the photodynamic activity of MB occurred in part, via a Type I mechanism in which •OH was produced. The interactions between MB and S. aureus were studied spectrophotometrically. This demonstrated that a metachromatic reaction took place between MB and S. aureus bacteria. Furthermore, S. aureus bacteria induced additional dimerization of MB.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3