Efficiency of removal of nitrogen, phosphorus, and zinc from domestic wastewater by a constructed wetland system in rural areas: a case study

Author:

Abe Kaoru1,Komada Michio2,Ookuma Akihito3

Affiliation:

1. National Institute for Agro-Environmental Sciences, 3-1-3, Kannondai, Tsukuba, 305-8604, Japan

2. National Agricultural Research Center, 3-1-1, Kannondai, Tsukuba, 305-8666, Japan

3. Koibuchi College of Agriculture and Nutrition, 5965, Koibuchimachi, Mito, 319-0323, Japan

Abstract

The effluent from the combined household wastewater treatment facilities used in unsewered areas of Japan is generally high in nitrogen (N) and phosphorus (P). In Japan, environmental quality standards for zinc (Zn) pollution were enacted recently because of the toxicity of Zn to aquatic ecosystems. In 2004 a fallow paddy field at the Koibuchi College of Agriculture and Nutrition was converted into a surface-water-flow constructed wetland (500 m2) to clean the effluent from the combined household wastewater treatment facility of a dormitory (100 residents) before discharge to a pond. We evaluated N and P removal efficiencies and the fate of soluble Zn in the wetland from April 2006 to March 2007. Wetland influent contained an average of 18.3 mg L−1 total N and 1.86 mg L−1 total P. In the effluent from the wetland, average total N concentration was 10.3 mg L−1 and average total P was 0.90 mg L−1. Average removal rates were 0.37 g m−2 d−1 for total N and 0.050 g m−2 d−1 for total P (percentage removal rates of 40% and 48%, respectively). Soluble Zn concentration decreased from 0.041 in the influent to 0.023 mg L−1 after passing through the wetland. The average Zn removal rate during the year was 0.0007 g m−2 d−1 (percentage removal rate 37%).

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3