Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories

Author:

Brooks L.1,Parravicini V.1,Svardal K.1,Kroiss H.1,Prendl L.2

Affiliation:

1. Institute for Water Quality, Vienna University of Technology, Karlsplatz 13/226, 1040, Vienna, Austria E-mail: lbrooks@iwag.tuwien.ac.at

2. BPE Technisches Büro Dr. Prendl, Am Kellerberg 31, 2325, Himberg-Pellendorf, Austria E-mail: bpe@prendl.at

Abstract

Sugar beet press pulp (SBP) accumulates as a by-product in sugar factories and it is generally silaged or dried to be used as animal food. Rising energy prices and the opening of the European Union sugar market has put pressure on the manufacturers to find alternatives for energy supply. The aim of this project was to develop a technology in the treatment of SBP that would lead to savings in energy consumption and would provide a more competitive sugar production from sugar beets. These goals were met by the anaerobic digestion of SBP for biogas production. Lab-scale experiments confirmed the suitability of SBP as substrate for anaerobic bacteria. Pilot-scale experiments focused on process optimization and procedures for a quick start up and operational control. Both single-stage and two-stage process configurations showed similar removal efficiency. A stable biogas production could be achieved in single-stage at a maximum volumetric loading rate of 10 kgCSB/(m3·d). Degradation efficiency was 75% for VS and 72% for COD. Average specific gas production reached 530 NL/kgCODSBP or 610 NL/kgVSSBP. (CH4: 50 to 53%). The first large-scale biogas plant was put into operation during the sugar processing period 2007 at a Hungarian sugar factory. Digesting approximately 50% of the SBP (800 t/d, 22%TS), the biogas produced could substitute about 40% of the natural gas required for the thermal energy supply within the sugar processing.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3