Plasticizers and related toxic degradation products in wastewater sludges

Author:

Beauchesne I.1,Barnabé S.1,Cooper D. G.2,Nicell J. A.3

Affiliation:

1. Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Université du Québec, 490 rue de la Couronne, Québec (QC), G1K 9A9, Canada E-mail: isabel.beauchesne@ete.inrs.ca; simon.barnabe@ete.inrs.ca

2. Department of Chemical Engineering, McGill University, 3610 University Street, Montréal (Québec), H3A 2B2, Canada E-mail: david.cooper@mcgill.ca

3. Department of Civil Engineering & Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montréal (QC), H3A 2K6, Canada E-mail: jim.nicell@mcgill.ca

Abstract

Plasticizers can persist during the treatment of wastewaters in sewage treatment plants (STPs) and can be discharged in effluents and/or accumulated in sewage sludges. For example, di-2-ethylhexyl phthalate (DEHP) is a common plasticizer that is now considered a priority pollutant and is known to accumulate in sludges. This may add constraints to the exploitation of the beneficial uses of sludges that contain significant quantities of plasticizers. Recently, it was demonstrated in studies with pure cultures that the biodegradation of plasticizers including DEHP and di-ethylhexyl adipate (DEHA) generates toxic metabolites including 2-ethylhexanoic acid, 2-ethylhexanol, and 2-ethylhexanal. However, the environmental impacts and fate of the degradation products arising from plasticizers are unknown. Therefore, this work investigated the concentrations of DEHP and DEHA and their metabolites in the sludges from several STPs in Quebec, Canada. DEHP and DEHA were found in concentrations ranging from 15 to 346 mg kg−1 and 4 to 743 mg kg−1, respectively, in primary, secondary, digested, dewatered or dried sludges. Metabolites were detected in almost all sludges, except those that had undergone a drying process at high temperature. It is concluded that sludges can represent significant sources of plasticizers and their toxic metabolites in the environment.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3