Prediction of thermal hydrolysis pretreatment on anaerobic digestion of waste activated sludge

Author:

Phothilangka P.1,Schoen M. A.1,Huber M.2,Luchetta P.2,Winkler T.3,Wett B.1

Affiliation:

1. Institute of Infrastructure, University of Innsbruck, Technikerstr.13, 6020, Innsbruck, Austria

2. MCI Management Center Innsbruck, Egger-Lienz-Str.120, 6020, Innsbruck, Austria

3. Thöni Umwelt- und Energietechnik GmbH, Obermarktstraße, 6410, Telfs, Austria

Abstract

Thermal hydrolysis is known for an efficient sludge disintegration capability to enhance biogas potential—but to which extent? Obviously, residual VSS concentration in digested sludge gives not sufficient information to predict additional biogas potential. In this paper, different types of waste activated sludge (WAS) were pre-hydrolysed by a full-scale Thermo-Pressure-Hydrolysis Process (Thermo-Druck-Hydrolyse, TDH) and break-down mechanisms on specific organic compounds were investigated. The IWA Anaerobic Digestion Model No.1 (ADM1) has been used for a systematic analysis of monitoring data gained from experimental work. The TDH process combined with anaerobic digestion can be well described by a modified ADM1 model that includes an XP-fraction (inactivated aerobic biomass and their decay products). More rapid and more complete degradation of TDH-treated sludge is represented by calibrated disintegration rate and disintegration factors, while biokinetic parameters of acetogenesis and methanogenesis show no sensitivity. TDH process impacts mainly biomass and decay products while inerts Xi already contained in the raw wastewater are hardly converted. Final concentration of soluble inerts in digestion effluent has been increased from 2% to 9% of influent COD due to thermal hydrolysis. An increase in biogas generation (ca. +80%) and in ammonia release (ca. +75%) can be explained by complete degradation of cell mass.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3