Combining multiway principal component analysis (MPCA) and clustering for efficient data mining of historical data sets of SBR processes

Author:

Villez Kris1,Ruiz Magda2,Sin Gürkan1,Colomer Joan2,Rosén Christian3,Vanrolleghem Peter A.14

Affiliation:

1. BIOMATH, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium E-mail: kris.villez@biomath.ugent.be; peter.vanrolleghem@gci.ulaval.ca

2. eXiT, Department of Electronics, Computer Science and Automatic Control, University of Girona, Campus Montilivi CP 17071 Building PIV, Girona, Spain E-mail: mlruizo@silver.udg.es

3. IEA, Lund University, Box 118, SE-221 00, Lund, Sweden E-mail: christian.rosen@iea.lth.se

4. modelEAU, Dépt. génie civil, Pavillon Pouliot, Université Laval, Québec, QC , G1K 7P4, Canada E-mail: peter.vanrolleghem@gci.ulaval.ca

Abstract

A methodology based on Principal Component Analysis (PCA) and clustering is evaluated for process monitoring and process analysis of a pilot-scale SBR removing nitrogen and phosphorus. The first step of this method is to build a multi-way PCA (MPCA) model using the historical process data. In the second step, the principal scores and the Q-statistics resulting from the MPCA model are fed to the LAMDA clustering algorithm. This procedure is iterated twice. The first iteration provides an efficient and effective discrimination between normal and abnormal operational conditions. The second iteration of the procedure allowed a clear-cut discrimination of applied operational changes in the SBR history. Important to add is that this procedure helped identifying some changes in the process behaviour, which would not have been possible, had we only relied on visually inspecting this online data set of the SBR (which is traditionally the case in practice). Hence the PCA based clustering methodology is a promising tool to efficiently interpret and analyse the SBR process behaviour using large historical online data sets.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3