Photodegradation of sulphadimethoxine in water by medium pressure UV lamp

Author:

Lester Y.1,Gozlan I.2,Avisar D.2,Mamane H.1

Affiliation:

1. School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

2. The Hydro-chemistry Laboratory, Geography and the Environment, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

The photodegradation rate of sulphadimethoxine (SMT) in water was studied under polychromatic UV light, in a bench scale apparatus. SMT photolysis was carried out at pH levels of 2.5, 6.5 and 10 to study the impact of acid base properties on the degradation of SMT. The highest SMT photolysis fluence based rate was found at pH = 2.5 (k=7.22 × 10−4 cm2/mJ) and the lowest rate at pH = 10 (k=4.72 × 10−4 cm2/mJ), thus the reaction rate decreases with an increase in pH between pH values of 2.5–10. Results indicated that direct photolysis is not satisfactory for degradation of SMT by polychromatic UV lamp as a fluence of approximately 7,000 mJ/cm2 is needed to break down 99% of SMT at pH 6.5. The photodegradation products of SMT were studied at various pH values. Photodegradation of SMT results in dissimilar relative amounts of intermediates formed at different pH values which may exert a photon demand and impact on SMT photodegradation rate.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3