Theory of filtration of highly compactable biosolids

Author:

Cleveland Theodore G.1,Tiller Frank M.1,Jae-Bok Lee2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4791, USA

2. Department of Environmental Engineering, Kyungsung University, Pusan 608-736, Korea

Abstract

Compactability of particulate structures is a key factor in the behavior of thickeners, filters, centrifuges, and presses. Aggregates in slurries are deposited at a cake or sediment surface under null stress. As more deposits cover the surface, developing stresses compact the particulate bed. Principal sources of stress originate from (1) sediment weight in thickening, (2) frictional drag in filters, (3) centrifugal forces in centrifuges, and (4) surface forces in belts or diaphragms. Only frictional forces in filters are considered in the present work. Stress applied to cakes results in a decrease in porosity and an increase in resistance to flow (decrease in permeability). The rate at which the permeability decreases with pressure has a profound effect on cake behavior. For highly compactable beds of biosolids or fragile flocs, doubling of the pressure may result in more than a doubling of the local resistance. Consequently, at applied pressures frequently below one atmosphere, increasing pressure neither increases the flow rate nor decreases the average cake porosity. For highly compactable biosolids, theoretical equations show that (1) filtrate volume vs. t is independent of pressure drop across the cake, Δpc, (2) the average specific resistance is proportional to Δpc, and (3) the average volume fraction of solids is independent of Δpc.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3