Decomposition of 2-chlorophenol in aqueous solution by ultrasound/H2O2 process

Author:

Jih-Gaw Lin1,Cheng-Nan Chang2,Jer-Ren Wu1

Affiliation:

1. Institute of Environmental Engineering, National Chiao Tung University, 75 Po-Ai Street, Hsinchu, Taiwan, ROC

2. Graduate Institute of Environmental Science, Tunghai University, Box 5-819, Taichung, Taiwan, ROC

Abstract

Several authors have indicated that ultrasound is effective in oxidizing organic contaminants in water and in wastewater either as the sole means of treatment or in combination with ozonation and UV irradiation. In this work we decomposed 2-chlorophenol (2-cp) in aqueous solution with ultrasound and H2O2. The experiment was conducted with a sonicator (Microson XL-2020) operated at 20 kHz. The double amplitude at the tip of the standard horn (12.7 mm) was adjusted to 0, 72 and 120 μm, corresponding to power input 0, 125 and 160 W. The initial concentration of aqueous 2-cp solution was 100 mg/l, treated in the system with 0, 100, 200 and 500 mg/l H2O2 individually. The volume of solution was 1 l in a mixing flask, and was circulated to the sonication cell at the rate 500 mL/min. Oxygen was continuously purged into the flask. The temperature of solution was kept constant at 25°C and pH was controlled at 3, 5, 7, 9 and 11. The results showed the decomposition of 2-cp was effective at increased amplitude of ultrasound and concentration of H2O2, and smaller pH. At reaction duration 360 min, 2-cp decomposition with 500 mg/l H2O2 was found with 57% improvement over the control, i.e. without H2O2 addition. The pH, controlled below the pKa of 2-cp (8.49 at 25°C), had significantly better decomposition of 2-cp than at greater values. The decomposition rate of 100 mg/l 2-cp was 99% at 120 μm double amplitude with H2O2 (200 mg/L) and pH 3, after 360 min of reaction. The removal of total organic carbon was found to be only 63%. From analysis of the experimental results, the data on 2-cp decomposition appeared to follow pseudo-first-order reaction kinetics. The squared correlation coefficient, R2, of the model was greater than 0.9 for various pH values.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3