Effect of effluent quality and temperature on the persistence of viruses in soil

Author:

Blanc Remy1,Nasser Abid2

Affiliation:

1. Division of Environmental Sciences, Graduate School of Applied Sciences, The Hebrew University, Jerusalem, Israel

2. Water Quality Research Laboratory, Ministry of Health, P.O. Box 8255, Tel-Aviv, Israel

Abstract

Survival and adsorption of pathogenic viruses in soil material can effect the extent of groundwater pollution by the application of wastewater effluents to soil. This study was conducted to determine the effect of soil composition and wastewater quality on the adsorption of pathogenic viruses (hepatitis A virus and poliovirus 1) and model bacteriophages onto soil. Moreover, the effect of temperature, soil composition and water quality on the die-off of pathogenic viruses and model bacteriophages was also studied. The effect of water quality on virus adsorption to soil was virus type dependant. Poliovirus 1 adsorption was the highest regardless of water type, whereas the poorest adsorption was observed for MS2 bacteriophage. Intermediate adsorption rates were observed for PRD-1 bacteriophage. No die-off was observed for any one of the studied viruses (HAV, poliol, MS2 and PRD-1) after 20 days incubation in soil saturated with secondary/tertiary treated wastewater at 10°C. At 23°C, the greatest die-off was observed for MS2 bacteriophage, which was incubated in soil saturated with secondary and tertiary treated effluents. Intermediate die-off was observed for poliovirus 1, whereas negligible die-off was observed for HAV and PRD-1 bacteriophages. This indicates that pathogenic viruses can survive for long period of time in soil at ambient temperatures. Our results indicate that polio 1 and MS2 bacteriophage can not be used as models for the persistence of pathogenic viruses such as HAV in soil. PRD-1 bacteriophage has been found to be more suitable than MS2 to predict the persistence of pathogenic viruses especially at ambient temperatures.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3