Chemical pretreatment of Lagenaria breviflora seeds used as biosorbents for the removal of aqueous-bound Ni2+

Author:

Abugu Hillary Onyeka1,Eze Samson Ifeanyi1,Ezugwu Arinze Longinus1,Ali Ibeabuchi Jude2,Ihedioha Janefrances Ngozi1

Affiliation:

1. a Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria

2. b Department of Pharmaceutical Chemistry, Enugu State University of Science and Technology, Enugu, Nigeria

Abstract

Abstract Lagenaria breviflora (LB) seeds were modified with acid (AMLB) and base (BMLB) for the sorption of Ni2+ from an aqueous solution. It was characterized by Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), and Brunauer–Emmett–Teller (BET). Kinetic, isotherm, thermodynamic, and effects of pH were also studied. The FTIR revealed a shift and formation of new functional groups on the pretreated biosorbent surface which could be attributed to the adsorption of Ni2+ onto the modified LB. SEM analysis under different magnifications revealed that the external surface of the modified LB exhibited several cracked surfaces and different pore structures which could be involved in the adsorption of Ni2+. The XRD showed an amorphous structure, while the BET revealed a large surface area (BMLB-360.430 and AMLB-322.965 m2/g). The experimental conditions – contact time, pH, and initial metal ion concentration indicated that the maximum adsorption was attained at 30 min at pH 6, while the adsorption efficiency increased as the concentration of the biosorbents increased. Kinetic studies indicated that the sorption process correlates with the pseudo-second-order kinetic model suggesting a chemosorption mechanism. The isotherm data obtained obeyed a Langmuir model suggesting monolayer adsorption of Ni2+. The calculated sorption thermodynamic factors showed the adsorption of Ni2+ to be exothermic and spontaneous.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3