Rare earth ions (La3+, Nd3+) substituted cobalt–strontium spinel ferrites for photocatalytic degradation of textile dyes

Author:

Ahmad Iram12,Safdar Muhammad3,Yasmin Nazia1,Iftikhar Aisha1,Kalsoom Ambreen4,Khalid Sadia5,Shams Zil e6,Mirza Misbah1ORCID

Affiliation:

1. a Department of Physics, The Women University Multan, Multan, Pakistan

2. f Department of Chemical, Material and Production Engineering, DICMaPI University of Naples Federico-II, Naples, Italy

3. b Department of Basic Sciences & Humanities, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan

4. c Department of Physics, The Govt Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan

5. d Nanosciences & Technology Department, National Centre for Physics Shahdra Valley Road Quaid-i-Azam University Campus, Islamabad 45320, Pakistan

6. e The Women University Multan, Multan, Pakistan

Abstract

Abstract In the industrial sector, productive and effective treatment of toxic dye-based color pollutants is a key issue. Lanthanum and neodymium substituted cobalt–strontium (Co–Sr) spinel ferrite (Co0.5Sr0.5RExFe2-xO4, x = 0.00 and 0.06) catalysts were synthesized and used to degrade Congo red and rhodamine B dyes from an aqueous solution mixture in this study. For this specific purpose, RE3+ ions substituted Co–Sr spinel ferrite nanoparticles with photocatalytic degradation ability were prepared through sol–gel method. The degradation of CR and RhB in recently synthesized nanoferrites was also examined. SEM and XRD were used to characterize the prepared samples. The optical band gap values of synthesized spinel ferrites were examined with the help of Tauc plots by using UV-visible absorption. It was determined that the energy bandgap ranged from 2.91 to 2.52 eV. For Co0.5Sr0.5Fe2O4, Co0.5Sr0.5La0.06Fe1.94O4, and Co0.5Sr0.5Nd0.06Fe1.94O4 nanoferrites, the rates of CR and RhB dye degradation were 73–90% and 45–85%, respectively, at pH 5–7. The kinetics models successfully described the degradation reaction as pseudo-first-order kinetics. It was, therefore, concluded that the prepared samples can be used as effective photocatalysts in order to eliminate hazardous pollutants present in wastewater.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3