Delineation of groundwater potential zones using electrical resistivity technique in Obudu basement terrain of Cross River State, Southeastern Nigeria

Author:

Ebong Ebong Dickson1ORCID,Emeka Chimezie Ndunagum2,Melouah Oualid3,Illa Ullah Rose1,Ita Anthony Edet1,Asfahani Jamal4

Affiliation:

1. a Applied Geophysics Programme, Physics Department, University of Calabar, PMB 1115 Calabar, Cross River State, Nigeria

2. b Geology Department, University of Calabar, PMB 1115 Calabar, Cross River State, Nigeria

3. c Earth and Space Sciences Department, Faculty of Hydrocarbons, Renewable Energy and Earth and Space Sciences, University Kasdi Merbah Ouargla, Ouargla 30000, Algeria

4. d Geology Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria

Abstract

Abstract Groundwater exploration in basement terrain can be somewhat challenging. Aquifer parameters like hydraulic conductivity and transmissivity can help in predicting groundwater potential zones in basement terrains. The vertical electrical sounding investigation that involved the Schlumberger configuration was employed to map the subsurface layers within the crystalline basement of the Obudu Complex, southeastern Nigeria. Secondary electrical resistivity data (Dar Zarrouk parameters) and a few pumping test-derived hydraulic parameters (i.e., transmissivity and hydraulic conductivity) were employed to develop empirical models. These models were used to predict hydraulic parameters at locations where only geoelectrical parameters (i.e., aquifer layer thickness and electrical resistivity) exist. Results showed that the northeastern part of the study area and areas located within zones of major faults displayed relatively higher values of hydraulic conductivity and transmissivity. The study area was classified into good, moderate, and poor groundwater potential aquifer zones. This integrated approach can be adopted in other areas with similar geology, where pumping test information is scarce or limited, as an alternative means of predicting aquifer properties and delineating groundwater potential zones for sustainable development and management of groundwater resources.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3