High rate biological contactor system using waste activated sludge from trickling filter/solids contact process

Author:

Wong Tiow Ping1,Babcock Roger W.1,Hu Bing1,Schneider Joachim1,Milan Sheldon1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, USA

Abstract

Abstract A high-rate biological contactor process (HRBC) can be used as primary treatment instead of a clarifier to remove particulate, colloidal and soluble fractions of organic matter via biosorption plus flotation and divert it to anaerobic digestion for methane production, simultaneously reducing secondary aeration energy demand. Pilot and bench tests were conducted at a range of contact times (15–60 min) and contactor dissolved oxygen (DO) (0.2–2.0 mg/L) using waste activated sludge (WAS) from a trickling filter/solids contact (TF/SC) process in the HRBC. Biosorption performance was lowest when contact times were <30 min and unstable at DO < 0.5 mg/L. The overall average of 20% sCOD capture was similar to previous findings by others using WAS from conventional AS. The biomethane potential (BMP) of the HRBC float material can be as high as that of primary sludge (340–400 mL CH4/g VS), which is much greater than WAS. Operating the HRBC with a long contact time (>30 min) or with high DO (>1 mg/L) increases the amount of biosorption but reduces the BMP of the float. It was also found that biosorption only effectively occurs when a WAS is paired with the wastewater from the same facility.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference12 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3