Affiliation:
1. Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
2. College of Civil Engineering, Hunan University, Changsha, China
3. Jiaxing Water Conservancy Investment Co., Ltd, Jiaxing, China
Abstract
Abstract
The effect of change of hydraulic characteristic and microbial community on pollution removal efficiency of the infiltration systems in the bioclogging development process remain poorly understood. In this study, therefore, the pollutant removal as a response to hydraulic conductivity reduction and the change of diversity and structure of microbial communities in vertical flow constructed wetlands (VFCWs) was investigated. The results indicated that the richness and diversity of the bacterial communities in the columns at different depths were decreased, and the microbial communities of the genus level were changed in the process of bioclogging. However, the variation of microbial communities has a low impact on the purification performance of VFCWs because the abundance of function groups, respiratory activity, and degradation potentiality of microorganisms remain steady or even get improved in the columns after bioclogging. On the contrary, the hydraulic efficiency of VFCWs decreased greatly by 16.9%, 9.9%, and 57.1% for VFCWs filled with zeolite (Column I), gravel (Column II), and ceramsite (Column III), respectively. The existence of short-circuiting and dead zones in the filter media cause the poor pollution removal efficiency of VFCWs due to the short contact time and decrease of oxygenation renewal, as well as low activity in the dead zone.
Funder
Special Grand National Science–Technology Project for Water Pollution Control and Treatment
Subject
Water Science and Technology,Environmental Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献