Impact pressure on an orifice plate by a rising water column driven by an air pocket in a vertical riser

Author:

Qian Yu1,Zhu David Z.2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada

2. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada and School of Civil and Environmental Engineering, Ningbo University, Zhejiang, China

Abstract

Abstract Occurrences of storm geyser events have attracted significant attention in recent years. Previous studies suggest that using an orifice plate can reduce the intensity of a geyser event but may induce a water-hammer type of pressure on the orifice plate. This study was conducted to explore the factors that influence the pressure transients when an orifice plate was installed in a vertical riser. A novel model was developed to simulated the movement of a rising water column driven by an air pocket in a vertical riser with an orifice plate on the top. Water-hammer type of pressure occurs when the water column reaches the orifice plate. The current model accurately simulates the dynamics of the water column considering its mass loss due to the flow along the wall of the riser (film flow) and the existence of the orifice plate. It was found that the initial water column length and the driving pressure, as well as the riser material, have a strong relationship with the peak pressure. The riser diameter and riser height have minor effect on the peak pressure. The water-hammer induced peak pressure reaches the maximum when the orifice opening is around 0.2 times the diameter of the vertical riser.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference27 articles.

1. Transient analysis of mixed free-surface-pressurized flows with modified slot model. Part1: computational model and experiment,2003

2. Effect of manhole molds and inlet alignment on the hydraulics of circular manhole at changing surcharge;Urban Water Journal,2019

3. 3D numerical modeling of geyser formation by release of entrapped air from horizontal pipe into vertical shaft;Journal of Hydraulic Engineering,2018

4. Geyser formation by release of entrapped air from horizontal pipe into vertical shaft;Journal of Hydraulic Engineering,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3