Semi-solid rheology characterization of sludge conditioned with inorganic coagulants

Author:

Feng Guohong1,Hu Zhi1,Ma He1,Bai Tiantian1,Guo Yabing1,Hao Yiran2

Affiliation:

1. School of Environment & Safety, Taiyuan University of Science & Technology, Taiyuan, 030024, China

2. Xi'an JiaoTong University, Xi'an, 710049, China

Abstract

Abstract Rheology measurement, a state-of-the-art technology in a multitude of engineering disciplines, has often been used for computational fluid dynamic simulation of wastewater treatment processes, especially in anaerobic digestion and dewatering. In this work, rheological tests were used to study the semi-solid characteristics of sludge and a good result was obtained. The inorganic coagulants polyaluminum chloride (PAC) and ferric chloride (FC) both increased the floc strength of sludge, leading to higher rheology parameters such as elastic modulus, viscous modulus and specific thixotropy area. Curiously, the shape of all rheological curves exhibited little change with increasing coagulant dosage. The results indicated that various physical and chemical actions among coagulants and sludge flocs relate only to rigid structure, not to the nature of rheology behavior. Frequency sweep tests clearly showed that elastic modulus was a logarithmic function of frequency, suggesting that sludge could not properly be called a soft material due to its inorganic particles. An improved viscoelastic model was successfully developed to predict the experimental data of creep and recovery tests in the linear viscoelastic region. Furthermore, complicated viscoelastic behavior of sludge was also observed, and all the rheology tests could provide the optimum dosage of PAC but not the optimum dosage of FC.

Funder

National Science Foundation for Young Scientists of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference37 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of New Compound Conditioning Agent in Activated Sludge Dewatering;Environmental Pollution Governance and Ecological Remediation Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3