Impact of hydraulic retention time on phosphorus removal from wastewater using reactive media

Author:

Benzing S.1,Couceiro F.1,Barnett S.1,Williams J. B.1,Pearce P.2,Stanford C.3

Affiliation:

1. School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland St, Portsmouth, Hampshire PO3 1AH, UK

2. Farmiloe Fisher Environment Ltd, Tregatherall Farm, Minster, Boscastle, Cornwall PL35 0EQ, UK

3. Southern Water Services, Southern House, Yeoman Road, Worthing, West Sussex, BN13 3NX, UK

Abstract

Abstract Phosphorus (P) discharge from wastewater treatment plants into the environment contributes to eutrophication issues. Reactive media filters represent an effective, simple and cost-effective solution to decrease the P content. Previous research used various experimental designs and often synthetic wastewater, making assessment of real-world performance difficult. This study assesses the impact of the hydraulic retention time (HRT) on P removal using real wastewater to refine design criteria for full-scale installations. Four media were compared in column experiments for >200 days. Different HRTs were applied and initially the media achieved low P effluent concentrations of >0.1 mg/L PO4–P, increasing over time. Best P removal was observed for the highest HRT with on average >99%. HRT was seen to be the driving factor for P removal rather than media capacity. Three of the four materials showed pH levels above 12 initially, decreasing over time. Water quality parameters, including organics, solids and metals, were monitored. In-depth analysis confirmed formation of calcium phosphate precipitation on the media's surface. The results suggest the importance of an optimal HRT to achieve high P removal and show that the reactive media application is an appropriate technology for P removal on small sites if the elevated pH is addressed.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3