Preparation of grafting copolymer of acrylic acid onto loess surface and its adsorption behavior

Author:

Tang Fengqin1,Gao Di1,Wang Li1,He Yufeng1,Song Pengfei1,Wang Rongmin1

Affiliation:

1. Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

Abstract

Abstract Loess is a typical natural mineral particle distributed widely around the world, and it is inexpensive, readily accessible, and harmless to the environment. In this study, loess was modified by surface grafting copolymerization of functional monomers, such as acrylic acid, N-vinyl pyrrolidone, and N,N-methylenebisacrylamide as a cross-linking agent, which afforded a novel loess-based grafting copolymer (LC-PAVP). After being characterized by scanning electron microscopy, thermal gravimetric analysis and Fourier-transform infrared spectroscopy, its adsorption capacity and mechanism of removing lead ions (Pb2+) were investigated. With the study of the optimal experimental conditions, it was demonstrated that the removal rate of Pb2+ by LC-PAVP can reach up to 99.49% in 60 min at room temperature. It was also found that the kinetic characteristics of the adsorption capacity due to the pseudo-second-order kinetic model and the thermodynamics conformed well with the Freundlich model. In summary, as a lost-cost and eco-friendly loess-based adsorbent, LC-PAVP is a good potential material for wastewater treatment.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3