Affiliation:
1. School of Civil Engineering and Architecture, Anhui University of Technology, 59 Hudong Road, Maanshan 243002, China
2. Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
Abstract
Abstract
Finding an appropriate adsorbent with high adsorption capacity, quick adsorption kinetics and easy regeneration was crucial to the removal of gallic acid (GA) from water and wastewater. Our aims were to investigate whether a magnetic ion exchange (MIEX) resin had the three merits mentioned above, and investigate the feasibility of GA adsorption on MIEX resin, and the adsorption kinetics, equilibrium, thermodynamics, regeneration and mechanism using batch tests. The uptake of GA increased with increasing GA concentration. The GA concentration influenced the time needed to reach equilibrium, but the adsorption could be completed within 120 min. Elevating temperature facilitated the GA removal. The removal percent remained above 95.0% at pH 5.0–11.0. Carbonate and bicarbonate promoted the GA removal; conversely chloride, sulfate and nitrate restrained the GA removal significantly. The adsorption kinetics could be fitted well with the pseudo second-order model, and the film diffusion governed the whole adsorption rate. The equilibrium data followed the Redlich–Peterson isotherm model. The adsorption was a spontaneous, endothermic and entropy driven process. The ion exchange dominated the removal mechanism. The spent MIEX resin was well regenerated by sodium chloride. Therefore, MIEX resin is a potential adsorbent for removing GA quickly and efficiently from water and wastewater.
Funder
the National Natural Science Foundation of China
the project of cultivating top talents for the universities in Anhui Province
the Innovation Research Funds of Anhui University of Technology for Graduate
the Innovation and Entrepreneurship Training Program of China for Undergraduate
Subject
Water Science and Technology,Environmental Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献