Adsorption and photocatalytic activity of Cu-doped cellulose nanofibers/nano-titanium dioxide for different types of dyes

Author:

Li Yumei1,Pan Ying1,Zhang Bin1,Liu Rongzhan12

Affiliation:

1. College of Textiles and Clothing, Qingdao University, Qingdao 266071, China

2. Center of Shandong province for eco-textile collaborative innovation, Qingdao 266071, China

Abstract

Abstract Cu-doped cellulose nanofibers/nano-titanium dioxide (Cu-TOCN/TiO2) photocatalysts were prepared by the hydrolysis-precipitation method using TiCl4 as the source of titanium and cellulose nanofibers suspension as a reaction medium. The prepared photocatalysts were used to decolorize organic dyes (reactive brilliant red K-2BP and cationic red X-GRL) efficiently under the synergistic effect of simultaneous adsorption and photocatalysis. The combination of TOCN inhibited the growth of TiO2 crystals, reduced agglomeration and increased the specific surface area. When compared with TiO2, TOCN/TiO2 improved the decolorization efficiency of the two dyes by 14.82% and 22.87%, respectively, under UV-light irradiation. The absorption edge exhibited red-shift from 380 to 410 nm after Cu doping. An excellent photocatalytic activity was recorded by 0.5 mol % Cu-TOCN/TiO2 and the decolorization efficiency of the two dyes was further improved by 34.76% and 10.44% respectively, compared with no Cu doping. After 2 hours of irradiation, the decolorization efficiency reached 96.57% and 99.73% respectively, while under dark conditions, it was 47.64% and 91.56% for the two dyes. The degradation mechanism of the dyes was verified as the destruction of the azo chromophore and benzene ring. This work provides a potential method for the development of a novel adsorptive photocatalyst with excellent recyclability.

Funder

Major Science and Technology Innovation Project of Shandong province, China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3