Achieving enhanced biological nitrogen removal via 2450 MHz electromagnetic wave loading on returned sludge in anaerobic-anoxic-oxic process

Author:

Sang Wenjiao1,Li Dong1,Zhang Qian1,Mei Longjie1,Hao Shiwen1,Feng Yijie1,Jin Xi1,Li Cuihua1,Feng Yangyang2,Singh Rajendra Prasad3

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

2. Anhui Urban Construction Design Institute Co. Ltd, Hefei 230051, China

3. School of Civil Engineering, Southeast University, Nanjing 210096, China

Abstract

Abstract To evaluate the enhancing of the biological nitrogen removal effectiveness by electromagnetic wave loading on returned sludge in the A/A/O reactor, some experiments were completed with the returned sludge loaded by 2,450 MHz electromagnetic wave. The excess sludge yield and pollutant removal effect of the system were evaluated. Results showed that stronger denitrification effect and less sludge yield were achieved. When 30% of the returned sludge was loaded by electromagnetic wave, the actual denitrification efficiency increased by 7% without dosage. The dissolution of carbon, nitrogen and phosphorus from loaded returned sludge was detected, thus providing the system with a supplemental carbon source of 4.6 g/d SCOD. The specific oxygen uptake rate of the oxic activated sludge increased by 14%, and the denitrification rate of the anoxic activated sludge increased by 29%. Illumina MiSeq analysis showed that the microbial richness increased obviously, and denitrifying bacteria (i.e. Dechloromonas, Zoogloea and Azospira, etc.) were accumulated.

Funder

National Natural Science Foundation of China

Science and Technology Infrastructure Program in Hubei

Fundamental Research Funds for the Central Universities of China

Fundamental Research Funds for the Central Universities

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3