Neural network-based software sensors for the estimation of key components in brewery wastewater anaerobic digester: an experimental validation

Author:

Dewasme L.1

Affiliation:

1. Automatic Control Laboratory, University of Mons, 31 Boulevard Dolez, 7000 Mons, Belgium

Abstract

Abstract This work focused on the experimental validation of software sensors with a view to improving on-line anaerobic digester monitoring. Based on cheaply available measurements such as conductivity, temperature, pH, redox potential, total suspended solids concentration and digester inflows and outflows, an intelligent estimator was built to reproduce the evolutions of key components such as volatile fatty acid, carbonate and alkalinity concentrations, as well as biogas composition (methane and carbon dioxide). The proposed solution considers a principal component pre-processing of the data selected as inputs of a radial basis function neural network (RBF-ANN) structure, using a particular sequential learning algorithm. Process dynamics were also taken into account, introducing a moving horizon version of this network (MH-RBF-ANN). Experimental results demonstrated the capacity of the MH-RBF-ANN to correctly predict the key-component evolutions and to improve the estimation accuracy, compared to the classical RBF-ANN.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference32 articles.

1. Online estimation of VFA, alkalinity and bicarbonate concentrations by electrical conductivity measurement during anaerobic fermentation;Water Science and Technology,2012

2. Robust nonlinear observers for bioprocesses: Application to wastewater treatment;Mendez-Acosta,2007

3. Simultaneous COD and VFA unmeasured process inputs estimation in actual anaerobic wastewater treatment processes;Control Engineering Practice,2017

4. The IWA anaerobic digestion model no 1 (ADM1);Water Science and Technology,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3