Sterile phosphate as a novel calcic adsorbent for phosphorus removal from wastewater

Author:

Hassoune Hicham1,Lachehab Adil1

Affiliation:

1. Department of Chemical and Biochemical Sciences, Mohammed VI Polytechnic University, Benguerir, Morocco

Abstract

Abstract Sterile phosphate (SP) was investigated for phosphorus removal from wastewater using batch adsorption experiments. The novel adsorbent is a mining by-product obtained from the phosphate mining plants having a strong affinity with phosphorus ions present in wastewater. The results of the batch adsorption experiments indicated that 30 min of contact time between the adsorbent and wastewater was sufficient for attaining equilibrium. The phosphorus removal from wastewater increased with increasing initial phosphorus concentration, adsorbent dose and temperature, while it decreased with increasing initial pH values. The maximum phosphorus removal efficiency was noted to be 94.4%. It was achieved in slightly acidic conditions (pH = 4), with an adsorbent dose and initial phosphorus concentration of 3 g L−1 and 20 mg L−1, respectively, and at room temperature. Kinetic analysis showed that phosphorus adsorption onto sterile phosphate was best fitted with the pseudo-second order kinetic model. The adsorption equilibrium data fitted well to the Langmuir model equation, indicating monolayer coverage of the adsorbent. The adsorption capacity calculated from the Langmuir model equation was found to be 7.962 mg g−1. Comparing with some industrial products and natural mineral adsorbents, sterile phosphate was found to be the most efficient adsorbent for phosphorus removal from wastewater.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3