Characterisation of floc size, effective density and sedimentation under various flocculation mechanisms

Author:

Fan Yuping1,Ma Xiaomin1,Dong Xianshu1,Feng Zeyu1,Dong Yingdi1

Affiliation:

1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

Abstract

Abstract Floc structure plays an important role in the separation of coal wastewater. In this study, a camera-based method is used to evaluate quantitatively the structural characteristics of flocs generated by different coagulants and flocculants. The correlations between particle size, settlement velocity and effective density of coal tailings flocs are analysed. The results show that the statistical settling velocity increases linearly with floc size, while the effective density decreases with increase in floc size. Different flocculation mechanisms lead to diverse growth abilities of flocs. When the flocculant is used alone, the quality of the flocs generated by the flocculants, cationic polyacrylamide (CPAM) and non-ionic polyacrylamide (NPAM), is better than that generated by anionic polyacrylamide (APAM). However, the combination of trivalent cations and APAM yields a much better effect than that obtained using CPAM and NPAM. Flocs become larger and more compact when treated with a coagulant combined with a flocculant.

Funder

International Cooperation and Exchange Programme

National Natural Science Foundation of China

Shanxi Provincial Key Research and Development Project

Natural Science Foundation of Shanxi Province

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3