Biosorption of organic micropollutants onto lignocellulosic-based material

Author:

Alves Thiago Caique1,Mota João André Ximenes1,Pinheiro Adilson1

Affiliation:

1. Programa de Pós-Graduação em Engenharia Ambiental, Universidade Regional de Blumenau, Rua São Paulo, n. 3250, CEP: 89030-000, Blumenau, SC, Brazil

Abstract

Abstract The occurrence of organic micropollutants such as pharmaceutical drugs and hormones in the environment reflects the inefficiency of traditional wastewater treatment technologies. Biosorption is a promising alternative from a technical-economic point of view, so understanding the mechanisms of adsorption in new biosorbents is vital for application and process optimization. Within this context, this study aims to evaluate the mechanisms of adsorption and removal of synthetic and natural hormones by Pinus elliottii bark biosorbent (PS) compared to commercial granular activated carbon (GAC) through kinetic models, isotherm models, and thermodynamic models. The adsorbents were also characterized by morphology, chemical composition, functional groups, and point of zero charge. Characterization of the adsorbents highlights the heterogeneous and fibrous morphology and broader range of functional groups found for PS. Kinetic adjustments showed high accuracy for pseudo-second-order, Elovich, and intraparticle diffusion models, presenting multilinearity and evidencing multi-stage adsorption. The isotherms for PS followed high-affinity models, predominantly chemisorption, while those for GAC followed the Langmuir model, where physisorption predominates. These mechanisms were confirmed by thermodynamic models, which also indicated a higher dependence on temperature in the adsorption process. In the fortified water removal test, PS showed removal values higher than GAC, highlighting the advantages of this adsorbent.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3