Electrochemical oxidation for decolorization of Rhodamine-B dye using mixed metal oxide electrode: modeling and optimization

Author:

Kothari Manisha S.1,Shah Kosha A.1

Affiliation:

1. Civil Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390001, India

Abstract

Abstract In the study the electrochemical oxidation process for decolorization of Rhodamine-B dye was studied using an anode coated with mixed metal oxides: TiO2, RuO2, and IrO2. Batch experimental studies were conducted to assess the effect of four important performance variables, current density, electrolyte concentration, initial pH and electrolysis time, on the decolorization and energy consumption. The process was modeled using an artificial neural network. Response surface methodology using central composite design (CCD) was utilized for optimization of the decolorization process. Based on the experimental design given by CCD, the results obtained by the statistical analysis show that the electrolysis time was the most influential parameter for decolorization whereas the current density had the greatest influence on the energy consumption. According to the optimized results given by the CCD model, maximum color removal of 97% and minimum energy consumption of 1.01 kWh/m3 were predicted in 4.9 minute of electrolysis time, using 0.031 M NaCl concentration at current density 10 mA/cm2 and an initial pH of 3.7. A close conformity was observed between the optimized predicted results and experimental results. The process was found to be efficient and consisted of indirect chemical oxidation producing strong oxidizing agents such as Cl2, HClO and OCl−.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3