Advanced electrochemical treatment of real biotreated petrochemical wastewater by boron doped diamond anode: performance, kinetics, and degradation mechanism

Author:

Li Hao1,Kuang Xinmou1,Qiu Congping1,Shen Xiaolan1,Zhang Botao2,Li Hua2

Affiliation:

1. Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China

2. Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China and Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

Abstract

Abstract Petrochemical wastewater is difficult to process because of various types of pollutants with high toxicity. With the improvement in the national discharge standard, traditional biochemical treatment methods may not meet the standards and further advanced treatment techniques would be required. In this study, electrochemical oxidation with boron doped diamond (BDD) anode as post-treatment was carried out for the treatment of real biotreated petrochemical wastewater. The effects of current density, pH value, agitation rate, and anode materials on chemical oxygen demand (COD) removal and current efficiency were studied. The results revealed the appropriate conditions to be a current density of 10 mA·cm−2, a pH value of 3, and an agitation rate of 400 rpm. Moreover, as compared with the graphite electrode, the BDD electrode had a higher oxidation efficiency and COD removal efficiency. Furthermore, GC-MS was used to analyze the final degradation products, in which ammonium chloride, formic acid, acetic acid, and malonic acid were detected. Finally, the energy consumption was estimated to be 6.24 kWh·m−3 with a final COD of 30.2 mg·L−1 at a current density of 10 mA·cm−2 without the addition of extra substances. This study provides an alternative for the upgrading of petrochemical wastewater treatment plants.

Funder

Natural Science Foundation of Ningbo

Natural Science Foundation of Zhejiang Province

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3