A study of the treatment of high-salt chromium-containing wastewater by the photocatalysis-constructed wetland combination method

Author:

Li Dandan1,Chen Fengzhen2,Han Jianqiu1

Affiliation:

1. College of Ecological Technology and Engineering, Shanghai Institute of Technology, 201418 Shanghai, China

2. Heze University, 274015 Shandong, China

Abstract

Abstract In this study, iron ore slag as the photocatalyst was introduced into a constructed wetland simulation system. A comparative experiment of the constructed wetland method and photocatalysis-constructed wetland combination method that treats the high-salt chromium-containing wastewater was carried out. The best hydraulic retention time (HRT) of the photocatalysis-constructed wetland combination system was studied. The effects of these two methods on biochemical oxygen demand (BOD5), chemical oxygen demand (COD) removal and Cr(VI) reduction rate of the high-salt chromium-containing wastewater were analysed after 14 periods. The results showed that under the optimal HRT of 4 hours, the COD and BOD5 of the wastewater reduced by 47% and 31%, and the reduction rate of Cr(VI) was 83% separately in the constructed wetland system. The COD and BOD5 of the wastewater reduced by 83% and 42%, and the reduction rate of Cr(VI) was 96% separately in the photocatalysis-constructed wetland combination method system. At the same time, the changes in plant parameters under these two systems were studied, and the results showed that the addition of photocatalyst and hydrogen peroxide to constructed wetlands did not affect the normal indicators of plant growth. The results showed that the photocatalysis-constructed wetland combination method not only reduced the treatment time greatly, but also improved the quality of the treated wastewater significantly.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference24 articles.

1. A full-scale comparison of two hybrid constructed wetlands treating domestic wastewater in Pakistan;Journal of Environmental Management,2018

2. Comparative treatment of textile wastewater by adsorption, Fenton, UV-Fenton and US-Fenton using magnetic nanoparticles-functionalized carbon (MNPs@C);Journal of Industrial and Engineering Chemistry,2017

3. New trends in removing heavy metals from industrial wastewater;Arab. J. Chem.,2011

4. Nitric oxide in plants: the history in just beginning;Plant, Cell and Environment,2001

5. Apoplastic synthesis of nitric oxide by plant tissues;Plant Cell,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3