Optimization design method for urban sewage collection pipe networks

Author:

Tian Jiandong1,He Guifang1

Affiliation:

1. Suzhou Vocational Institute of Industrial Technology, Jiangsu, 215104, China

Abstract

Abstract In this study, a secondary subsystem mathematical model is established under the condition that the layout of the sewage collection branch, trunk, and main pipe network projects is fixed. The sewage collection branch and trunk pipe network projects are treated as the research objective by taking the minimum annual cost of the sewage collection pipe network projects as the objective function, the longitudinal slope of the pipe section and the economic flow rate of the pipe section as constraints, and the diameter of the pipe section as the decision variable. A first-level subsystem mathematical model is established by taking the sewage collection branch, trunk, and main pipe network project as the research object. A large system mathematical model is established in the same manner. This model can be solved using the large system secondary decomposition–dynamic programming aggregation method, and the optimal diameter for each pipe section can be obtained. A regional sewage collection pipe network project in Taizhou city was considered as an example for comparative analysis before and after optimization, and the results verified that the optimization method proposed in this study can solve this complex large system optimization problem.

Funder

National Science and Technology Support

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference12 articles.

1. Hydrograph-based storm sewer design optimization by genetic algorithm;Canadian Journal of Civil Engineering,2006

2. Deterministic integrated optimization model for sewage collection networks using tabu search;Journal of Water Resources Planning & Management,2014

3. Optimization model for the design of distributed wastewater treatment networks;Hemijska Industrija,2012

4. Coordinated optimal operation model of complex flood control system;Shuikexue Jinzhan/Advances in Water Science,2015

5. Decomposition–coordination model of reservoir group and flood storage basin for real-time flood control operation;Hydrology Research,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3