Hydrodechlorination of carbon tetrachloride with nanoscale nickeled zero-valent iron @ reduced graphene oxide: kinetics, pathway, and mechanisms

Author:

Chen Xiao1,Wang Zhen1,Yang Qi1,Wang Yeyao2,Liu Zhaoxiang3,Yang Zhilin1

Affiliation:

1. Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China

2. China National Environmental Monitoring Center, Beijing, 100012, China

3. Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing, 100035, China

Abstract

Abstract In recent years, carbon tetrachloride (CT) has been frequently detected in surface water and groundwater around the world; it is necessary to find an effective way to treat wastewater contaminated with it. In this study, Ni/Fe bimetallic nanoparticles were immobilized on reduced graphene oxide (NF@rGO), and used to dechlorinate CT in aqueous solution. Scanning electron microscopy (SEM) demonstrated that the two-dimensional structure of rGO could disperse nanoparticles commendably. The results of batch experiments showed that the 4N4F@rGO (Fe/GO = 4 wt./wt., and Ni/Fe = 4 wt.%) could reach a higher reduction capacity (143.2 mgCT/gcatalyst) compared with Ni/Fe bimetallic nanoparticles (91.7 mgCT/gcatalyst) and Fe0 nanoparticles (49.8 mgCT/gcatalyst) respectively. That benefited from the nickel metal as a co-catalyst, which could reduce the reaction activation energy of 6.59 kJ/mol, and rGO as an electrical conductivity supporting material could further reduce the reaction activation energy of 4.73 kJ/mol as presented in the conceptual model. More complete dechlorination products were generated with the use of 4N4F@rGO. Based on the above results, the reductive pathway of CT and the catalytic reaction mechanism have been discussed.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project of China

Beijing Municipal Education Commission School-Enterprise Cooperation Projects

portable , in car, on-line monitoring instrument development and demonstration for focusing on prevention and control heavy metals like mercury, chromium, lead, cadmium, arsenic

the Fundamental Research Funds for the Central Universities

the Key Project of Air Pollution Causes and Control Technology Research

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3