Affiliation:
1. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
2. Trojan Technologies, London, Ontario, Canada
Abstract
Abstract
In this study, the influence of total suspended solids (TSS) and particle size as well as effluent temperature on peracetic acid (PAA) decomposition kinetics in municipal wastewater was investigated. PAA decomposition was best described following second order kinetics in primary effluent (PE) and first order kinetics in secondary effluent (SE) samples. For synthetic samples prepared by varying TSS levels, PAA demand increased on average by about 0.042 mg/L in PE and 0.034 mg/L in SE for every 10 mg/L increase in TSS. Similarly, the PAA decay rate constant in these samples increased at a rate of 0.0014 L/mg.min and 0.00039 min−1, respectively, per 10 mg/L TSS. To examine the effect of particle size, synthetic samples with narrow size fractions (20–45, 45–75, and 75–90 μm) were prepared. It was found that samples with smaller particle size fractions had a greater PAA demand and decay rate constant. Effluent temperature also enhanced the PAA decomposition rate with the calculated activation energies for PE and SE samples being 29,980 J/mol and 34,860 J/mol, respectively.
Subject
Water Science and Technology,Environmental Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献