Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process

Author:

Bardhan Mondira1,Novera Tamanna Mamun1,Tabassum Mumtahina1,Islam Md. Azharul2,Jawad Ali H.3,Islam Md. Atikul1

Affiliation:

1. Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh

2. Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh

3. School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Abstract

AbstractIn this study, activated carbon (AC) was prepared from agro-waste betel nut husks (BNH) through the chemical activation method. Different characterization techniques described the physicochemical nature of betel nut husks activated carbon (BNH-AC) through Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), and pH point of zero charge. Later, the produced AC was used for methylene blue (MB) adsorption via numerous batch experimental parameters: initial concentrations of MB dye (25–250 mg/L), contact time (0.5–24 hours) and initial pH (2–12). Dye adsorption isotherms were also assessed at three temperatures where the maximum adsorption capacity (381.6 mg/g) was found at 30 °C. The adsorption equilibrium data were best suited to the non-linear form of the Freundlich isotherm model. Additionally, non-linear pseudo-second-order kinetic model was better fitted with the experimental value as well. Steady motion of solute particles from the boundary layer to the BNH-AC's surface was the possible reaction dynamics concerning MB adsorption. Thermodynamic study revealed that the adsorption process was spontaneous and exothermic in nature. Saline water emerged as an efficient eluent for the desorption of adsorbed dye on AC. Therefore, the BNH-AC is a very promising and cost-effective adsorbent for MB dye treatment and has high adsorption capacity.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3