Microwave-assisted method to degrade phenol using persulfate or hydrogen peroxide catalyzed by Cu-bearing silicon carbide

Author:

Sun Jie1,Xia Guotong1,Yang Wenjin1,Hu Yue1,Shen Weibo2

Affiliation:

1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China

2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China and Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resource, Yangling 712100, China

Abstract

Abstract The radical generation properties of hydrogen peroxide and persulfate for phenol degradation were investigated under microwave irradiation using copper-doped silicon carbide (Cu/SiC) composites as catalyst. The results showed that 90% and 70% of phenol and total organic carbon (TOC), respectively, were removed within 7 min. Microwave activation of hydrogen peroxide and sodium persulfate in terms of thermal effects and accelerated electron transfer was analyzed by degradation kinetics and X-ray photoelectron spectroscopy (XPS). The microwave activation of Na2S2O8 demonstrated that the hot spots promote decomposition of persulfate more rapidly and the rate of persulfate decomposition was more than three times the activation rate of a normal heating method. There is a synergistic effect between Cu and microwave radiation, which is highlighted by the H2O2 activation; ·OH was generated due to the redox cycle between Cu(I)/Cu(II) and was responsible for phenol degradation using H2O2. High performance liquid chromatography (HPLC) analysis indicated that hydroxylation and sulfate radicals addition of phenol were the initial oxidation reaction steps of hydrogen peroxide and persulfate, respectively, followed by further oxidation to form short-chain carboxylic acids.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3