Parameter subset selection for the dynamic calibration of activated sludge models (ASMs): experience versus systems analysis

Author:

Ruano M.V.1,Ribes J.1,De Pauw D.J.W.2,Sin G.23

Affiliation:

1. Dep. Enginyeria Química, Universitat de València. Doctor Moliner, 50. 46100, Burjassot, València, Spain . (E-mail: m.victoria.ruano@uv.es; josep.ribes@uv.es)

2. BIOMATH, Ghent University, Coupure Links 653, B-9000, Gent, Belgium (E-mail: dirk.depauw@biomath.ugent.be)

3. Department of Chemical Engineering, Technical University of Denmark, Building 229 DK-2800 Kgs. , Lyngby, Denmark (E-mail: gsi@kt.dtu.dk)

Abstract

In this work we address the issue of parameter subset selection within the scope of activated sludge model calibration. To this end, we evaluate two approaches: (i) systems analysis and (ii) experience-based approach. The evaluation has been carried out using a dynamic model (ASM2d) calibrated to describe nitrogen and phosphorus removal in the Haaren WWTP (The Netherlands). The parameter significance ranking shows that the temperature correction coefficients are among the most influential parameters on the model output. This outcome confronts the previous identifiability studies and the experience based approaches which excluded them from their analysis. Systems analysis reveals that parameter significance ranking and size of the identifiable parameter subset depend on the information content of data available for calibration. However, it suffers from heavy computational demand. In contrast, although the experience-based approach is computationally affordable, it is unable to take into account the information content issue and therefore can be either too optimistic (giving poorly identifiable sets) or pessimistic (small size of sets while much more can be estimated from the data). An appropriate combinations of both approaches is proposed which offers a realistic (doable) and sound approach for parameter subset selection in activated sludge modelling.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3