Application of immobilized cells to the treatment of cyanide wastewater

Author:

Chen C.Y.1,Kao C.M.1,Chen S.C.2,Chien H.Y.1,Lin C.E.1

Affiliation:

1. Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan

2. Institute of Life Science, National Kaoshiung Normal University, Kaoshiung 824, Taiwan

Abstract

Cyanide is highly toxic to living organisms, particularly in inactivating the respiration system by tightly binding to terminal oxidase. To protect the environment and water bodies, wastewater containing cyanide must be treated before discharging into the environment. Biological treatment is a cost-effective and environmentally acceptable method for cyanide removal compared with the other techniques currently in use. Klebsiella oxytoca (K. oxytoca), isolated from cyanide-containing industrial wastewater, has been shown to be able to biodegrade cyanide to non-toxic end products. The technology of immobilized cells can be applied in biological treatment to enhance the efficiency and effectiveness of biodegradation. In this study, potassium cyanide (KCN) was used as the target compound and both alginate (AL) and cellulose triacetate (CTA) techniques were applied for the preparation of immobilized cells. Results from this study show that KCN can be utilized as the sole nitrogen source by K. oxytoca. The free suspension systems reveal that the cell viability was highly affected by initial KCN concentration, pH, and temperature. Results show that immobilized cell systems could tolerate a higher level of KCN concentration and wider ranges of pH and temperature, especially in the system with CTA gel beads. Results show that a longer incubation period was required for KCN degradation using immobilized cells compared to the free suspended systems. This might be due to internal mass transfer limitations. Results also indicate that immobilized systems can support a higher biomass concentration. Complete KCN degradation was observed after the operation of four consecutive degradation experiments with the same batch of immobilized cells. This suggests that the activity of the immobilized cells can be maintained and KCN can be used as the nitrogen source throughout KCN degradation experiments. Results reveal that the application of immobilized cells of K. oxytoca is advantageous to the maintenance of KCN degradation efficiency. Thus, it is conceivable that the immobilized cells of K. oxytoca would be applicable to the treatment of cyanide-containing wastewaters.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3