Affiliation:
1. Department of Civil Engineering and Geosciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre , Dame, IN 46556, USA (E-mail: nerenberg.1@nd.edu)
Abstract
We report on a novel process for total nitrogen (TN) removal, the hybrid membrane biofilm process (HMBP). The HMBP uses air-supplying hollow-fibre membranes inside an activated sludge tank, with suppressed aeration, to allow concurrent nitrification and denitrification. We hypothesised that a nitrifying biofilm would form on the membranes, and that the low bulk-liquid BOD concentrations would encourage heterotrophic denitrifying bacteria to grow in suspension. A nitrifying biofilm was initially established by supplying an influent ammonia concentration of 20 mgN/L. Subsequently, 120 mg/L acetate was added to the influent as BOD. With a bulk-liquid SRT of only 5 days, nitrification rates were 0.85 gN/m2 per day and the TN removal reached 75%. The biofilm thickness was approximately 500 μm. We used DGGE to obtain a microbial community fingerprint of suspended and attached growth, and prepared a clone library. The DGGE results, along with the clone library and operating data, suggest that nitrifying bacteria were primarily attached to the membranes, while heterotrophic bacteria were predominant in the bulk liquid. Our results demonstrate that the HMBP is effective for TN removal, achieving high levels of nitrification with a low bulk-liquid SRT and concurrently denitrifying with BOD as the sole electron donor.
Subject
Water Science and Technology,Environmental Engineering
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献