Comparison of two wavelet-based tools for data mining of urban water networks time series

Author:

Villez K.1,Pelletier G.2,Rosén C.3,Anctil F.2,Duchesne C.4,Vanrolleghem P.A.12

Affiliation:

1. BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure Links 653, B-9000 , Gent, Belgium (E-mail: kris.villez@biomath.ugent.be;peter.vanrolleghem@gci.ulaval.ca)

2. gEAU: Groupe de recherche en génie des eaux, Département de génie civil, Pavillon Adrien-Pouliot, Université Laval, Québec, G1K 7P4, Canada (E-mail: genevieve.pelletier@gci.ulaval.ca; francois.anctil@gci.ulaval.ca; peter.vanrolleghem@gci.ulaval.ca)

3. IEA: Department of Industrial Electrical Engineering and Automation, Lund University, LTH, Box 118, SE-221 00, Lund, Sweden (E-mail: christian.rosen@iea.lth.se)

4. LOOP: Laboratoire d'observation et d'optimisation des procédés, Département de génie chimique, Pavillon Adrien-Pouliot, Université Laval, Québec, G1K 7P4, Canada (E-mail: carl.duchesne@gch.ulaval.ca)

Abstract

In this paper, two approaches to data mining of time series have been tested and compared. Both methods are based on the wavelet decomposition of data series and allow the localization of important characteristics of a time series in both the time and frequency domain. The first method is a common method based on the analysis of wavelet power spectra. The second approach is new to the applied field of urban water networks and provides a qualitative description of the data series based on the cubic spline wavelet decomposition of the data. It is shown that wavelet power spectra indicate important and basic characteristics of the data but fail to provide detailed information of the underlying phenomena. In contrast, the second method allows the extraction of more and more detailed information that is important in a context of process monitoring and diagnosis

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3